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Abstract

Algorithms are presented for three-dimensional crystal-
lographic space groups, handling tasks such as the
generation of symmetry operations, the characterization
of symmetry operations (determination of rotation-part
type, axis direction, sense of rotation, screw or glide part
and location part), the determination of space-group
type [identi®ed by the space-group number of the
International Tables for Crystallography (Dordrecht:
Kluwer Academic Publishers)] and the generation of
structure-seminvariant vectors and moduli. The latter
are an algebraic description of allowed origin shifts,
which are important in crystal structure determination
methods or for comparing crystal structures. The space-
group type determination produces a change-of-basis
matrix which transforms a given space-group represen-
tation to the standard one according to the International
Tables for Crystallography. The algorithms were imple-
mented and tested using the SgInfo library. The source
code is free for non-commercial applications.

1. Introduction

This paper presents a set of algorithms for the applica-
tion of space-group symmetry in crystallographic
programs. Any method for the solution of crystal
structures and for structure re®nement needs at least the
set of symmetry operations for the space group under
consideration. In this context, the symmetry operations
can be viewed as `primary symmetry information'.
Frequently, `secondary symmetry information' is needed
for speci®c purposes; this information can be derived
from the primary information, the symmetry operations.
Examples of secondary symmetry information are
structure-seminvariant vectors and moduli (needed in
direct methods or Patterson methods), and axis direc-
tions and locations of symmetry elements (useful when
dealing with atoms on special positions or with Harker
vectors and planes).

The ®rst algorithm presented addresses the genera-
tion of the primary information. Two approaches are in
common use. One approach takes a space-group symbol,
usually a Hermann±Mauguin (H±M) symbol as de®ned
in the International Tables for Crystallography (Hahn,
1983) (IT83), and obtains the symmetry operations from
a look-up table. This approach has the disadvantage of

being limited to the tabulated space-group representa-
tions. Another approach attempts to overcome this
limitation by interpreting the space-group symbol.
Larson (1969), Burzlaff et al. (1977) and Burzlaff &
Hountas (1982) devised algorithms which translate
H±M symbols into a set of symmetry operations (the
generators) which are then used to produce the full set
of operations through group multiplication. However,
H±M symbols were originally designed as a convenient
description of given space-group representations. While
it is natural to derive a H±M symbol for a given list of
symmetry operations, it is problematic to derive the
symmetry operations from a H±M symbol. Burzlaff &
Zimmermann (1980) de®ne simple rules for the inter-
pretation of short H±M symbols which make the selec-
tion of the space-group type unique, but the rules for the
selection of the location of the origin with respect to the
symmetry elements that complies with the International
Tables for Crystallography are `too complicated to give
the basis of a computer program' (Burzlaff & Hountas,
1982). Therefore, the existing algorithms fall back to
look-up tables (implicit or explicit) for the origin
selection.

The procedures of Larson (1969) [as implemented in
the GSAS suite of programs (Larson & von Dreele,
1995)] and Burzlaff et al. (1977) [as implemented in the
LAZY PULVERIX program (Yvon et al., 1977)]
produce identical results for all conventional H±M
symbols [as listed in Hall & Grosse-Kunstleve (1999)],
except for the symbols Pnm21, P21nm and Pm21n (Le
Page, 1997). In a more rigorous test with the 534 sensible
short H±M symbols possible for the orthorhombic
crystal system, 179 differences were found in the
resulting space-group representations. This means H±M
symbols are both dif®cult to handle with computer
methods and prone to cause misunderstandings.
Furthermore, the collection of symmetry representa-
tions that can be described by H±M symbols is limited
because there is no established notation for the selection
of alternative origins, and no provision for symmetry
representations where the generators have axes' direc-
tions other than the reference directions of the H±M
notation. These limitations are serious when working
with subgroup and supergroup relations.

The limitations and ambiguities of H±M symbols
prompted Menzer (1960), Hall (1981) and Shmueli
(1984) to suggest new types of space-group symbols. The
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notation of Menzer was motivated by his work on the
classi®cation of reciprocal lattices of special lattice
complexes. The notations of Hall and Shmueli were both
designed to be `computer adapted' (Shmueli, 1993). The
de®nition of the Hall symbols was further re®ned by
Hall & Grosse-Kunstleve (1999). These Hall symbols
have some similarities with Hermann±Mauguin symbols,
but de®ne the space-group representation without
ambiguities. Another advantage is that any three-
dimensional crystallographic space-group representa-
tion can be described by a Hall symbol.

This paper presents an algorithm for the generation of
symmetry operations, which was developed for use with
a Hall symbol interpreter. The Hall symbol interpreter
itself is not described. As a consequence of the clear
de®nition of Hall symbols, the algorithm for the inter-
preter is trivial. Of course, the algorithm for the
generation of symmetry operations is not restricted to
use with a Hall symbol interpreter. A group-generating
set of symmetry operations from any source can be used.

The remaining parts of this paper describe algorithms
for the derivation of secondary symmetry information.
The algorithms for the characterization of symmetry
operations are the foundation for the determination of
the space-group type and the generation of structure-
seminvariant vectors and moduli. A symmetry operation
is characterized by the type of the rotation part, the axis
direction, the sense of rotation, and the intrinsic (screw
or glide) part and location part of the translation part.
The space-group type determination produces a change-
of-basis matrix which transforms a given representation
to the standard one according to IT83. Combining this
algorithm with that of Le Page (1987) would result in a
program for the automatic space-group determination
of atomic structures. It could also be used in the deter-
mination of subgroup and supergroup relations.
Another application under consideration is to use the
change-of-basis matrices to transform symmetry-related
information which is dif®cult to generate from ®rst
principles, but easily tabulated for the standard space-
group representations, for example asymmetric units
and Euclidean normalizers.

Algorithms similar to those presented here do exist,
but have not been published. The algorithm of Biosym's
(now Molecular Simulations Inc., http://www.msi.com)
InsightII FIND_SYMMETRY module has not been
published and is only available as part of a large
commercial package. The program PowderCell (Kraus
& Nolze, 1996, 1997) includes algorithms for the deri-
vation of transformations between various settings of a
space-group type, and also the generation of transla-
tionsgleiche and klassengleiche subgroups, but the source
code is not available and the algorithms have not been
published. The program SPACER (StroÂ z, 1997) includes
algorithms for the characterization of symmetry opera-
tions, but the corresponding algorithm has not been
published and the source code was not disclosed.

2. Notation

Full group: a set of symmetry operations which is closed
under binary multiplication. Symmetry operations which
are related by combinations of the unit translations are
considered to be equal.
Group generators: a set of symmetry operations which is
used to generate the full group. This set is not necess-
arily a minimal set and can be redundant.
Space-group type: see de®nition in Section 8.2.1 of IT83
(Wondratscheck, 1983). Two space groups belong to the
same space-group type if they correspond to the same
entry in IT83.
Space-group representation: a particular full group is a
representation of the corresponding space-group type.
For example, the space-group representations denoted
by the H±M symbols Pmna, Pnmb, Pbmn, Pcnm, Pncm
and Pman all correspond to the same space-group type
(space group No. 53 in IT83). In general, each space-
group type has an in®nite number of representations.
The (W, w) formalism for symmetry operations from
IT83 is used. W is the (3 � 3) rotation part or rotation
matrix and w is the (3 � 1) translation part or translation
vector of the operation.
To simplify the presentation, the following de®nition is
introduced. Let W be the rotation part of a symmetry
operation (W, w). The corresponding proper rotation
matrix Wp is de®ned as

Wp � W if det�W� > 0;

Wp � ÿW if det�W� < 0:

Vectors and matrices are enclosed by square brackets.
The superscript T denotes the transpose of a vector or
matrix. However, matrices shown in Jones Faithful
notation (e.g. x, y, z) are not enclosed by brackets.
The notation [ex ey ez]N and [ex ey ez]Nÿ1 is used to describe
a rotation matrix of type N (1, 2, 3, 4, 6, 1Å , 2Å = m, 3Å , 4Å , 6Å )
with axis direction [ex ey ez]. The superscript ÿ1 is used
for matrices with a negative sense of rotation (see
also x4).
The ®rst non-zero entry in a row of a matrix (if one
exists) is called a pivot.
A square matrix A is called unimodular if |det(A)| = 1.
Z = set of integer numbers.
Q = set of rational numbers.

3. Ef®cient generation of the symmetry operations of a
space group

Given a list of symmetry operations, the generation of
the full space group is, in its simplest form, a fairly trivial
matter. Starting at the top of the list, each matrix in the
list is multiplied by all preceding matrices, and also with
itself. Each matrix product is again a symmetry opera-
tion, which is compared with the entries in the list. If not
already present, it is appended to the list.
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Thus, for a space group with a total of nS symmetry
operations, nS�nS � 1�=2 matrix multiplications are
necessary. For example, 18528 matrix multiplications are
necessary for generating space group Fm3Åm (No. 225,
M = 192). In addition, more than 1.7 million matrix
comparisons are necessary.

The simplistic approach to the generation is therefore
very inef®cient for high-symmetry space groups. This
problem has already been addressed partially by Hall
(1981). The algorithm presented here is a generalization
of Hall's procedure and is more robust.

The key to higher ef®ciency in group generation is to
take advantage of the structure intrinsic to space groups.
Two properties of any crystallographic space group are
exploited:

(a) The list of centring vectors is a normal subgroup
and can be maintained separately [see theorem T7.23 in
Boisen & Gibbs (1990)].

(b) The inversion operation can be maintained sepa-
rately (even if the inversion is not at the origin).

From this it follows that the resulting space-group
structure consists of three parts:

(i) A list of nZ centring vectors.
(ii) A variable fI and the translation part wI,L of an

inversion operation, if present. The rotation part ÿI is
implied. Let fI = 1 if no inversion operation exists, fI = 2
otherwise.

(iii) A list of nM � nS=�nZ fI� representative symmetry
matrices (WL, wL).

Both properties (a) and (b) are commonly exploited.
For example, the centring vectors are also listed sepa-
rately in IT83, and many programs keep track of the
inversion operation with a single variable similar to fI.
However, all programs known to the author only treat
inversions at the origin in this manner.

The optimized group generation can be understood
more easily by ®rst considering the rotation parts only
and ignoring both the centring vectors and all transla-
tion parts. This reduced set of symmetry operations
describes the point group corresponding to the given
space group. The maximum number of point group
matrices is 48 (point group m3Åm). For this and for all
other centric point groups ÿI is one element of the
group. It follows that each matrix W in the group is
related to a second matrix ÿI �W = W � (ÿI) = ÿW,
which must also be an element of the group. Therefore
the list of point-group matrices can be cut in half by
keeping only one representative of a pair W and ÿW.
This corresponds to property (b) above. To record the
reduction, a variable has to be introduced. In this
discussion, fI is used for this purpose. The point-group
structure therefore consists of two parts: the variable fI

and the list of representative rotation parts with at most
24 elements.

When the translation parts and centring vectors are
now considered, theorem T7.26 of Boisen & Gibbs
(1990) can be used to arrive at property (a). The

theorem states that if a space group has two elements
(W, w1) and (W, w2) there must be a third element
(I, w2 ÿ w1). This means it is only necessary to keep one
representative of (W, w1) and (W, w2) in the list of
representative symmetry matrices, if �w = w2 ÿ w1 is
added to the list of centring vectors.

Property (b) can be derived by generalizing the
reduction of the list of point-group operations due to the
presence of ÿI, and invoking property (a) if necessary. If
the space group has an element (ÿI, wI), each matrix
(W, w1) in the group is related to the matrices
(W, w1)(ÿI, wI) = (ÿW, w2) and (ÿI, wI)(W, w1) =
(ÿW, w3), with w2 de®ned as w2 = W � wI � w1 and w3 =
ÿw1 � wI . Therefore, the list of space-group matrices
can be reduced by keeping only one representative of a
pair (W, w1) and (ÿW, w2), or (W, w1) and (ÿW, w3). To
record the reduction [which also involves the pair (I, 0)
and (ÿI, wI)], a variable ( fI) has to be introduced, and
the translation part wI has to be stored. If w2 and w3 are
not equal, property (a) is invoked, and �w = w2 ÿ w3 is
added to the list of centring vectors. It follows that the
maximum number of elements in the list of repre-
sentative symmetry matrices is still only 24.

The structured group generation algorithm has two
main layers. The upper layer contains procedures to
expand the list of centring vectors and symmetry
matrices by repeated binary combination of the existing
elements in the lists. For symmetry matrices, this
combination is a matrix multiplication. For the centring
vectors, the combination is a vector addition. Otherwise
the two group generation algorithms are identical to the
simplistic algorithm described earlier.

The upper layer also keeps track of the inter-
dependencies of the elements of the space-group
structure. Each centring vector has to be multiplied with
all rotation matrices in the list of representative
symmetry matrices to possibly generate additional
centring vectors. Furthermore, if an inversion with
translation part wI is present, another centring vector
�w can arise for each element (WL, wL) in the list of
representative symmetry matrices,

�WL;wL��ÿI;wI� � �ÿWL;WLwI � wL�;
�ÿI;wI��WL;wL� � �ÿWL;ÿwL � wI��:

�1�

Invoking property (a) yields �w � WLwI � 2wL ÿ wI .
The lower layer of the algorithm contains procedures

for adding a centring vector, a translation part of an
inversion operation, or a symmetry operation (W, w) to
the space-group structure. In the current context,
`adding' means `appending after testing'.

When adding a centring operation, the test is simply
to check if the vector is already in the list. If the test is
negative, the centring operation is appended to the list.
No action is taken if the test is positive.

When adding a translation part wI of an inversion
operation, the algorithm uses fI to test if there is already
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a translation part wI,L . If there is no such translation part
(if fI = 1), the new translation part is stored as wI,L and
fI is set to 2. Otherwise property (a) is invoked, and a
centring operation wI,LÿwI is added.

When adding a symmetry operation (W, w), two tests
are carried out. The ®rst test is to check if the rotation
part W is already in the list of representative symmetry
matrices. If so, property (a) is again invoked and a
centring operation �w = w ÿ wL is added, where wL is
the translation part of the operation (WL, wL) with W =
WL. Otherwise the second test is carried out, which
determines whether the rotation part ÿW is already in
the list. If so, a translation part wI = w � wL of an
inversion operation has to be added [this follows from
(ÿI, wI)(W, w) = (ÿW, wI ÿ w) = (ÿW, wL)]. If not, the
operation (W, w) is appended to the list.

The structured group generation for space group
Fm3Åm involves only 300 matrix multiplications,
approximately 3500 matrix comparisons, 120 multi-
plications of the centring vectors and rotation parts in
the list of representative symmetry matrices, and a small
number of vector additions and book-keeping opera-
tions. Overall, the algorithm is approximately 100 times
faster than the simplistic method, and in general even
faster than a table look-up from a ®le. However, ef®-
ciency is not the only gain. The fact that the space group
is immediately structured is also very helpful when using
the symmetry information in other applications, for
example in the space-group type determination algor-
ithm described in one of the following sections.

Remark. The ef®ciency of the group generation could
be further improved by using a Dimino algorithm as
implemented in the GAP package (GAP, 1995), where it
can be applied to n-dimensional ®nite groups. An
implementation in the framework of the SgInfo library
(Grosse-Kunstleve, 1995a,b) was not attempted.

4. Characterization of symmetry operations

Characterizing a symmetry operation (W, w) involves
the following.

(a) Determination of the properties of the rotation
part:

Rotation-part type (1, 2, 3, 4, 6, 1Å , 2Å = m, 3Å , 4Å , 6Å ).
Axis direction of the corresponding proper rotation

Wp.
Sense of rotation with respect to the axis direction

(b) Decomposition of the translation part in:
Intrinsic (screw or glide) part.
Location part (origin shift).

Algebraic procedures for these characterizations are
given by Fischer & Koch (1983) and Boisen & Gibbs
(1990).

When casting these procedures in programmable
algorithms, working with row echelon forms is the key
to the determination of the axes directions and the
decompositions of the translation parts. General de®-

nitions of row echelon forms are found, for example, in
Boisen & Gibbs (1990) and standard linear algebra text
books such as Strang (1986). Any (m � n) matrix M can
be converted into a row echelon form U with a series of
row operations. The procedure is similar to Gaussian
elimination and results in an upper triangular matrix U.
If the row operations are recorded in an (m � m) matrix
T, the equation TM = U holds at any time. The actual
algorithm for the computation of U and T was taken
from the CrystGAP package (Eick et al., 1997), which is
freely available as part of the GAP system (GAP, 1995).
The CrystGAP `RowEchelonFormT' algorithm has two
special properties: M, U and T are integer matrices, and
the row operations are performed in a way such that T is
unimodular at all times. Working with integer matrices
is, in general, a substantial practical advantage. The fact
that T is unimodular is important for the computation of
the Smith normal form, which is needed later for the
determination of change-of-basis matrices and struc-
ture-seminvariant vectors and moduli. For the compu-
tation of the axes' directions and the decomposition of
the translation parts, T is not required to be unimodular.
However, implementation is simpli®ed by always using
the same algorithm for the construction of U.

An example will be used to show all parts of the
algorithm for the characterization of symmetry opera-
tions. The example symmetry operation (W, w) to be
characterized is given as

W �
0 ÿ1 0

0 0 1

ÿ1 0 0

2
4

3
5; w �

ÿ1=3

0

1=6

2
4

3
5: �2�

The rotation-part type N of W is easily derived from
the determinant and trace of W by look-up in Table 1
(Fischer & Koch, 1983),

det�W� � 1; tr�W� � 0 ) N � 3:

The next step in the characterization, determination
of the axis direction of Wp, is only carried out if |N| > 1.
The determination of the axis direction is equivalent to
the determination of the eigenvector corresponding to
the eigenvalue 1,

Wpe � e) �Wp ÿ I�e � 0; �3�
where e is the eigenvector and I is the identity matrix. To
determine the eigenvector for Wp in our example,

�Wp ÿ I� �
ÿ1 ÿ1 0

0 ÿ1 1

ÿ1 0 ÿ1

2
4

3
5 �4�

Table 1. Look-up table for rotation-part type N

tr(W)
det(W) ÿ3 ÿ2 ÿ1 0 1 2 3

1 2 3 4 6 1
ÿ1 1 6 4 3 2
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is converted to the row echelon form

U �
1 1 0

0 1 ÿ1

0 0 0

2
4

3
5: �5�

The row echelon form immediately reveals the rank
of (Wp ÿ I), since it is equal to the number of non-zero
rows in U. The rank of (Wp ÿ I) is always equal to 2 as in
this case. The equation (Wp ÿ I)e = 0 with e = [e1, e2, e3]T

can now be solved by backsubstitution. The unknowns
e1, e2 and e3 go into two groups. One is made up of the
basic variables, those that correspond to columns with
pivots. The other group is made up of the free variables,
corresponding to the columns without pivots. For a
matrix of rank 2, as in the example, there is just one free
variable. To obtain a non-trivial solution e 6� 0, some
value 6� 0 has to be assigned to the free variable. In the
example, e3 is set to 1 and backsubstitution yields e =
[ÿ1, 1, 1]T.

The particular backsubstitution algorithm used scales
the solution vector with a factor d in order to obtain an
integer vector, if necessary. In the context of other
algorithms, d needs to be considered, but the value of d
is not important in the present context.

The scaling makes sure that the presented algorithm
produces the shortest eigenvector with integer compo-
nents, but the sign is more or less arbitrary, e.g. e =
[ÿ1, 1, 1]T and e = [1, ÿ1, ÿ1]T are both valid eigen-
vectors. To make axes' directions comparable, and to
de®ne a reference orientation for the determination of
the sense of rotation, the following convention is
adopted: for a pair of eigenvectors [e1, e2, e3]T and
[ÿe1, ÿe2, ÿe3]T, the eigenvector chosen is the one with
e3 > 0. If e3 = 0, the one chosen is that with e2 > 0. If e2 =
0, the one chosen is that with e1 > 0. According to this
convention, we would choose the eigenvector e =
[ÿ1, 1, 1]T for our example above.

For N < ÿ1 (mirror plane, roto-inversion), the eigen-
vector e of Wp is also an eigenvector of W, having the
eigenvalue ÿ1. For a mirror plane, e is normal to the
mirror plane. For the other roto-inversions, e is parallel
to the roto-inversion axis.

For |N| > 2, the sense of rotation with respect to the
axis direction is determined according to theorem TA3.9
in Boisen & Gibbs (1990). The axis direction e =
[e1, e2, e3]T and the matrix

Wp �
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
4

3
5 �6�

are evaluated. e points in the positive direction of the
rotation represented by Wp if one of the following
conditions is true:

(a) e2 = e3 = 0 and e1r32 > 0,
(b) r21e3 ÿ r31e2 > 0.

In our example, condition (b) is true, and the ®nal
result for the rotation part W is that it represents a
threefold rotation about [ÿ1, 1, 1]T with a positive sense
of rotation.

Following the procedure given by Fischer & Koch
(1983), the ®rst step in the analysis of the translation
part w is the decomposition into the intrinsic part wi and
the location part wl . For this, (W, w)n = (I, t) has to be
computed, where the rotational order n = |N|, except for
N = ÿ1 and N = ÿ3. For those two cases, n = ÿ2N. Now
the intrinsic part is obtained as wi = (1=n)t, and the
location part is the difference wl = wÿ wi . For example,

0 ÿ1 0

0 0 1

ÿ1 0 0

2
64

3
75;

ÿ1=3

0

1=6

2
64

3
75

0
B@

1
CA

3

�
1 0 0

0 1 0

0 0 1

2
64

3
75;

ÿ1=2

1=2

1=2

2
64

3
75

0
B@

1
CA

) wi �
ÿ1=6

1=6

1=6

2
64

3
75; wl �

ÿ1=6

ÿ1=6

0

2
64

3
75: �7�

The symmetry operation (W, wl) corresponds to a
pure rotation or re¯ection at the same location as the
original operation (W, w). The location of (W, wl) is
described by the solutions of the equation (W, wl)x = x.
The equation is rearranged as (W ÿ I)x = ÿwl , and the
row echelon form U of (W ÿ I) computed as before.
However, since this is an inhomogeneous system of
equations, T, the matrix that is used to record the row
operations, is also needed:

�WÿI� �
ÿ1 ÿ1 0

0 ÿ1 1

ÿ1 0 ÿ1

2
64

3
75! U �

1 1 0

0 1 ÿ1

0 0 0

2
64

3
75;

T �
ÿ1 0 0

0 ÿ1 0

ÿ1 1 1

2
64

3
75) T�ÿwl� �

ÿ1=6

ÿ1=6

0

2
64

3
75: �8�

Setting the free variable equal to 0 and solving the
system T(W ÿ I)x = Ux = T(ÿwl) for x by straightfor-
ward backsubstitution yields x = [0, ÿ1=6, 0]T. This is a
®xed point of the symmetry operation (W, wl). For
rotation-part types N > 1 and N = ÿ2, the combination
with the axis direction of W is a convenient description
of all ®xed points. For the other rotation-part types, the
®xed point is unique.

Remark. x could also be determined by the equation
x = (W ÿ I)+(ÿwl), where (W ÿ I)+ is the pseudo-
inverse of (W ÿ I) (Strang, 1986). However, in the given
framework, this mathematically more elegant formula-
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tion is in practice more cumbersome than the algorithm
presented.

5. Determination of space-group type

Any arbitrary set of symmetry operations obtained
through group multiplication must belong to one of the
230 space-group types (Wondratscheck, 1983), and can
be transformed to the corresponding standard repre-
sentation of IT83 by some change-of-basis matrix (C, c),
with det(C) > 0. A symmetry operation (WO, wO) in the
original (arbitrary) basis system is transformed to
(WS, wS) in the standard basis system with a similarity
transformation (Strang, 1986) (WS, wS) = (C, c)
�(WO, wO)(C, c)ÿ1. The space-group type of a given set
of symmetry operations can be determined by trying to
construct (C, c) for each of the 230 standard settings
tabulated in IT83 as described below. Only one of the
trials can succeed. With a few obvious optimizations, a
space-group type determination typically takes only a
few hundredths of a second on a Pentium II computer.

The symmetry operations of the 230 standard settings
are encoded as Hall symbols. The Hall symbols are
translated to generators which are then expanded to the
full group.

The algorithm for the construction of (C, c) can be
subdivided into the following basic steps:

(a) Construction of (P, 0), which transforms Go to Gp ,
where Go is the set of symmetry operations in the
original setting and Gp is the set of symmetry operations
in a primitive setting.

(b) Determination of the point group of Go (and Gp).
(c) Construction of (M0, 0), which transforms Gp to

GM0, where the symmetry operations of GM0 refer to a
convenient `standard' basis for the given point group.

(d) Adjustment of (M0, 0) to (M, 0) for certain
combinations of Laue groups and centring types.

For triclinic, tetragonal, trigonal, hexagonal and cubic
space groups, the transformation matrix (C, 0) =
(M, 0)(P, 0) is already determined at this point. The ®nal
step of the algorithm is:

(e) Determination of the origin shift (I, c).
For monoclinic and orthorhombic space groups, a trial

loop over six transformation matrices (A, 0) for alter-
native cell choices or settings is necessary (corre-
sponding to the six columns in Table 4.3.1 of IT83). The
trial matrices (A, 0) are generated from the identity
matrix I and the crystal-system-speci®c rotation matrices
R2 and R3 of Table 2. Table 3 lists the actual A for each
pass of the trial loop. For each trial transformation
matrix (C, 0) = (A, 0)(M, 0)(P, 0), step (e) is attempted.

It is worth emphasizing that a knowledge of a metric is
not needed for any part of the algorithm. All compu-
tations can be performed with the symmetry operations
alone. A certain algebraic form of a symmetry operation
implies restrictions for the metric of the underlying basis
system. This means the essential properties of an actual

metric are encoded in the symmetry operations, and the
metric itself is not necessary for the construction of
(C, c).

The following is a detailed description of the steps
listed above.

5.1. Step (a): construction of (P, 0)

The ®rst step in the determination of (P, 0) is to build
an expanded list of the centring operations. This is
performed by looping all combinations of subtracting 1
from the non-zero components of each centring opera-
tion. For example, if the centring operations are given as
[2=3; 1=3; 1=3]T and [1=3; 2=3; 2=3]T (R-centred cell),
the expanded list is:

�2=3; 1=3; 1=3�T; �1=3; 2=3; 2=3�T;
�2=3; 1=3;ÿ2=3�T; �1=3; 2=3;ÿ1=3�T;
�2=3;ÿ2=3; 1=3�T; �1=3;ÿ1=3; 2=3�T;
�2=3;ÿ2=3;ÿ2=3�T; �1=3;ÿ1=3;ÿ1=3�T;
�ÿ1=3; 1=3; 1=3�T; �ÿ2=3; 2=3; 2=3�T;
�ÿ1=3; 1=3;ÿ2=3�T; �ÿ2=3; 2=3;ÿ1=3�T;
�ÿ1=3;ÿ2=3; 1=3�T; �ÿ2=3;ÿ1=3; 2=3�T;
�ÿ1=3;ÿ2=3;ÿ2=3�T; �ÿ2=3;ÿ1=3;ÿ1=3�T :

To make the following steps more ef®cient, this list is
reduced by eliminating linearly dependent vectors
(e.g. [2=3; 1=3;ÿ2=3]T and [ÿ2=3;ÿ1=3; 2=3]T). The
reduced list is then sorted such that shorter vectors are
at the beginning of the list. Finally, the unit translations
[1, 0, 0]T, [0, 1, 0]T and [0, 0, 1]T are appended. This is
necessary because in the general case the expanded list
of centring operations does not necessarily span the
whole three-dimensional space (e.g. in the case of an

Table 2. Crystal-system-speci®c rotation matrices R2 and
R3 used in Table 3

Crystal system R2 R3

Monoclinic

0 0 1

0 ÿ1 0

1 0 0

2
4

3
5 � �101�2

ÿ1 0 1

0 1 0

ÿ1 0 0

2
4

3
5 � �010�3

Orthorhombic

0 1 0

1 0 0

0 0 ÿ1

2
4

3
5 � �110�2

0 0 1

1 0 0

0 1 0

2
4

3
5 � �111�3

Table 3. Trial matrices A for monoclinic and ortho-
rhombic space groups

Loop pass Trial A

1 I
2 R3

3 R3.R3

4 R2

5 R2.R3

6 R2.R3.R3
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H-centred cell). The ®nal list for the example R-centred
cell is

�ÿ1=3; 1=3; 1=3�T;
�ÿ1=3; 1=3;ÿ2=3�T;
�ÿ1=3;ÿ2=3; 1=3�T;
�ÿ1=3;ÿ2=3;ÿ2=3�T;
�2=3; 1=3; 1=3�T;
�2=3; 1=3;ÿ2=3�T;
�2=3;ÿ2=3; 1=3�T;
�1; 0; 0�T;
�0; 1; 0�T;
�0; 0; 1�T :

The construction of P is now attempted with a three-
deep loop over all possible subsets of three vectors
(without permutations). For each pass of the loop, these
three vectors p1, p2 and p3 are used as a basis, and the
corresponding transformation matrix is [see theorem
T2.10 in Boisen & Gibbs (1990)]

Pÿ1 �
p1;1 p2;1 p3;1

p1;2 p2;2 p3;2

p1;3 p2;3 p3;3

2
4

3
5: �9�

If det(Pÿ1) is equal to the number of centring
operations, a valid P is obtained by inverting Pÿ1. If
ÿdet(Pÿ1) is equal to the number of centring operations,
the ®rst column of Pÿ1 is multiplied by ÿ1 before
performing the inversion.

Any P obtained in this way could be used to transform
Go to Gp . However, some P can result in symmetry
matrices with rotation parts containing fractional
elements. If this is the case, the search loop over the
subsets of three vectors is continued until a P has been
found that produces only symmetry operations with
rotation parts with integer elements.

Remark. For the example R-centred cell, the ®rst
three vectors in the list above satisfy all search condi-
tions. This means that the search loop returns a valid P
after only one pass. However, in general the search loop
can be computationally expensive [l�l ÿ 1��l ÿ 2�=6
passes, where l is the number of elements in the list], and
it is the feeling of the author that a more elegant search
for a primitive basis could exist.

5.2. Step (b): determination of the point group

The point-group type of a space group can easily be
determined by ®rst counting the number #N of times
each rotation-part type N occurs in the list of repre-
sentative symmetry matrices with nM = �#N elements,
and then matching against the list of possible cases in
Table 4.

5.3. Step (c): construction of (M0, 0)

The basic idea for the construction of (M0, 0) is to use
the axes' directions of Laue-group-speci®c symmetry
operations as a new basis. It is trivial to derive the Laue-
group type from the point-group type as determined in
the previous step (b). For a given Laue-group type, the
list of representative symmetry matrices is searched for
the ne elements with the rotation-part types |N| listed in
Table 5.

Table 4. Look-up table for the determination of point-
group type

Conditions
Point
group

#3 + #3 = 8 nM = 12 Acentric 23
(cubic) Centric m3

nM = 24 Acentric #4 = 6 432
#4 = 6 43m

Centric m3m
#6 + #6 = 2 nM = 6 Acentric #6 = 2 6

(hexagonal) #6 = 2 6
Centric 6/m

nM = 12 Acentric #6 = 2 #2 = 7 622
#2 = 6 6mm

#6 = 2 6m2
Centric 6/mmm

#3 + #3 = 2 nM = 3 Acentric 3
(trigonal) Centric 3

nM = 6 Acentric #2 = 3 32
#2 = 3 3m

Centric 3m
#4 + #4 = 2 nM = 4 Acentric #4 = 2 4

(tetragonal) #4 = 2 4
Centric 4/m

nM = 8 Acentric #4 = 2 #2 = 5 422
#2 = 4 4mm

#4 = 2 4m2
Centric 4/mmm

#2 + #2 = 3 Acentric #2 = 3 222
(orthorhombic) #2 = 2 mm2

Centric mmm
#2 + #2 = 1 Acentric #2 = 1 2

(monoclinic) #2 = 1 m
Centric 2/m

nM = 1 Acentric 1
(triclinic) Centric 1

Table 5. Look-up table used for the construction of
(M0, 0)

Laue group ne |N|

1 1 1
2/m 1 2
mmm 3 2 2 2
4/m 1 4
4/mmm 2 4 2
3 1 3
3m 2 3 2
6/m 1 3
6/mmm 2 3 2
m3 2 3 2
m3m 2 3 4
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For triclinic space groups (Laue group 1Å), no axis
direction is available because any vector is an eigen-
vector of Wp (which corresponds to the symmetry
operation listed in Table 5), and M0 = I can simply be
used. For all other cases with ne = 1, only one axis
direction e is available, which is used as basis vector bz.
The two other vectors bx and by which are necessary to
de®ne a basis have to be found with a different tech-
nique. The vectors bx and by are determined in a Laue-
group-dependent manner that is described below. Once
bx and by are determined, M0ÿ1 is set to

M0ÿ1 �
bx;1 by;1 bz;1

bx;2 by;2 bz;2

bx;3 by;3 bz;3

2
4

3
5: �10�

If det(M0ÿ1) < 0, the ®rst and the second column of M0ÿ1

are swapped. Finally, M0 is obtained by inverting M0ÿ1.
To arrive at a conventional basis for Laue group 2/m,

bx and by must be chosen perpendicular to bz. Theorem
TA4.1 in Boisen & Gibbs (1990) provides a method for
performing this without involving a metric tensor.
According to the theorem, a vector x is in the plane
perpendicular to the axis direction e of a proper rotation
matrix Wp with rotational order n, if and only if S � x = 0,
with S = Wp � W2

p � . . . � Wn
p. To solve the equation

S � x = 0, the row echelon matrix U is computed from S.
For example,

S �
0 ÿ1 0

0 0 1

ÿ1 0 0

2
64

3
75�

0 0 ÿ1

ÿ1 0 0

0 1 0

2
64

3
75�

1 0 0

0 1 0

0 0 1

2
64

3
75

�
1 ÿ1 ÿ1

ÿ1 1 1

ÿ1 1 1

2
64

3
75! U �

1 ÿ1 ÿ1

0 0 0

0 0 0

2
64

3
75: �11�

The rank of S is always equal to 1 as in this case, and x
has two free components. Four solution vectors to the
system S � x = 0 are obtained by assigning, in turn, the
pairs of values [1, 0], [0, 1], [1, 1] and [1, ÿ1] (corre-
sponding to the four shortest vectors with x � 0 in the
two-dimensional Cartesian plane) to the free compo-
nents. The third component for each of the four solution
vectors is computed by backsubstitution into U � x = 0.
There are six possibilities for picking a pair of basis
vectors bx and by out of the four solutions. The pair
which results in the smallest value of |det(M0ÿ1)| is
accepted for the ®nal M0.

For the Laue groups 4/m, 3Åm and 6/m, U and the four
solution vectors are computed as before for Laue group
2/m. Each of the four solution vectors is, in turn, used as
trial bx, and by = Wp � bx (note the choice of |N| = 3 for
Laue group 6/m). The bx which results in the smallest
value of |det(M0ÿ1)| is accepted for the ®nal M0.

For Laue group mmm, the three basis vectors
necessary for the construction of M0ÿ1 are immediately

available. These are the three axis directions of the three
twofold axes (referring to Wp). It only remains to
arrange the vectors such that det(M0ÿ1) > 0.

In the other cases with ne = 2, two axis directions are
available. Let Wp,z and ez = bz correspond to the
symmetry operation listed ®rst in Table 5, and let Wp,x

and ex = bx correspond to the second one. The third
vector is obtained from by = Wp,z � ex (note the choice of
|N| = 3 for Laue group 6/mmm).

5.4. Step (d): adjustment of (M0, 0) to (M, 0)

The algorithm of step (c) does not always ®nd a
standard basis in the sense of IT83. To keep step (c)
simple, the c axis is systematically chosen as unique axis
for monoclinic space groups, instead of the standard
unique axis b. For Laue group 4/mmm, the twofold axis
used as bx is more or less randomly chosen among two
possibilities. If by chance the twofold axis was used
which runs parallel to [1, 1, 0]T in the standard basis, a
C-centred cell will result instead of a primitive cell, or an
F-centred cell instead of an I-centred cell. For very
unusual settings of Laue group 4/m (for example, the
group generated by ÿ2x ÿ y, 2x ÿ z, ÿx + y + z), the
same kind of problem can result from the choice of basis
vectors bx and by as explained above. A similar case
exists for Laue groups 3Åm and 6/mmm, where the
random choice of the twofold axis can lead to an
H-centred cell (see Section 1.2 in IT83) instead of a

Table 6. Correction matrices Mc

Condition Correction matrix Mc

Laue group 2/m
010

001

100

2
4

3
5= [111]3ÿ 1

Laue groups 4/m and 4/mmm
C-centred 110

1 ÿ 10

00 ÿ 1

2
4

3
5 = C ! P

Laue groups 4/m and 4/mmm
F-centred 110

ÿ110

001

2
4

3
5 = F ! I

Laue groups 33 and 3m
obverse setting ÿ100

0 ÿ 10

001

2
4

3
5= [001]2

Laue groups 3m and 6/mmm
H-centred 110

ÿ120

001

2
4

3
5 = H ! P

Point group m3Å

P-centred,
c-glide plane
perpendicular to [1, 0, 0]T

0 ÿ 10

100

001

2
4

3
5= [001]4
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primitive cell. Another problem can occur for rhombo-
hedral lattices (Laue groups 3Å and 3Åm), where the choice
of basis vectors can lead to an obverse setting instead of
the standard reverse setting (see Fig. 5.7 in IT83). A
special case also arises for the cubic space group Pa3Å

(No. 205). In the standard representation of IT83, there
is an a-glide plane perpendicular to the basis vector a
and a c-glide plane perpendicular to the basis vector b.
However, the matrix M0 can produce a representation
with a c-glide plane perpendicular to a and an a-glide
plane perpendicular to b.

All these problems are easily detected and corrected
by multiplying M0 by a correction matrix Mc listed in
Table 6. It would be possible to avoid these problems in
the ®rst place by making step (c) more sophisticated, but
the overall algorithm would be more complex.

5.5. Step (e): determination of the origin shift (I, c)

Let GT be the group of symmetry operations in one of
the 230 standard settings of IT83, and let GC be the
group of symmetry operations obtained by transforming
GO with (C, 0) as obtained through steps (a)±(d). If the
number of symmetry operations in GT and GC are equal,
and if the rotation part of each symmetry operation in
GT can be matched with an operation in GC, the
following algorithm for the determination of (I, c) is
attempted.

For computing the origin shift, it is suf®cient to ®nd
an (I, c) that transforms the generators of GC to the
generators of GT . As was shown by various authors (for
example, Boisen & Gibbs, 1990), any space group can be
generated from at most three generators plus centring
operations. Noncentrosymmetric space groups need at
most two generators.

The ®rst step of the algorithm is therefore to search
the space-group structure for up to two generators. The
choice of generators is based on the crystal system as
shown in Table 7. The crystal system itself is derived
from the point group as determined in step (b). For |N| >
2, the symmetry operations with a positive sense of
rotation are chosen. For trigonal space groups, only one
of the twofold axes in Table 7 can be present. For cubic
space groups, the fourfold axis is used if present,
otherwise the twofold is used.

The list of generators is built for both GT and GC . For
centrosymmetric space groups, the inversion operations
are added to both lists of generators, and the original
one or two generators are converted to proper rotations
through multiplication by the inversion operation if
necessary. After these manipulations, the rotation parts
in both lists must be equal. However, due to the origin
shift (I, c) to be determined, the translation parts in
general are not equal.

The next step is to transform the symmetry operations
in both generator lists to a primitive setting. The trans-
formation matrix (Pg, 0) for this purpose is again
obtained with the algorithm of step (a). Let ng be the
number of operations in the generator lists, and let
(WT, wT)j and (WC, wC)j, j = 1, . . . , ng, be the operations
in the generator list for GT and GC , respectively, in the
primitive setting. Since the same transformation matrix
is used for both generator lists, the rotation parts must
still be equal, and it is convenient to set Wj = WT, j = WC, j.

The origin shift (I, cp) in the primitive setting can be
found by solving the equation (I, cp)(Wj, wC, j)(I, ÿcp) =
(Wj, wT, j)(mod Z) simultaneously for all j. The condition
`(mod Z)' has to be introduced because the symmetry
operations (W, w) and (W, w + u), u = [u1, u2, u3]t, ui 2 Z,
can, in certain space groups, have different characters.
For example, in space group P31m (No. 157), the
operation xÅ , xÅ + y, z is a mirror plane (perpendicular to
[2, 1, 0]T), but xÅ + 1, xÅ + y, z is a b-glide plane.

The previous equation can be rearranged as follows,

�I; cp��Wj;wC;j��I;ÿcp� � �Wj;wT;j� �mod Z�
, �Wj;wC;j � cp��I;ÿcp� � �Wj;wT;j� �mod Z�
, �Wj;wC;j � cp ÿWjcp� � �Wj;wT;j� �mod Z�
) wC;j ÿ �Wj ÿ I�cp � wT;j �mod Z�
, �Wj ÿ I�cp � wC;j ÿ wT;j �mod Z�: �12�

The resulting equation system has nr = 3ng rows (known
equations) and nc = 3 columns (unknown variables).
For example, for the maximum ng = 3, the design of the
(9 � 3) system is

M � cp �
�W1 ÿ I�
�W2 ÿ I�
�W3 ÿ I�

2
64

3
75cp �

wC;1 ÿ wT;1

wC;2 ÿ wT;2

wC;3 ÿ wT;3

2
64

3
75 � b �modZ�:

�13�
As pointed out recently by Eick et al. (1997), the system
M � cp = b (mod Z) can be solved by computing the
Smith normal form D = PMQ [see also, for example,
Cohen (1993) or Sims (1994)]. D is a matrix in diagonal
form with diagonal entries d1, . . . , dn.

The algorithm for the computation of the Smith
normal form was also taken from the CrystGAP
package. It is the ®rst part of the function
`SolveInhomModZ'. The proof that the Smith normal

Table 7. Look-up table used in the determination of the
origin shift (I, c)

Crystal system Axes directions e and rotation-part types |N|

Triclinic 1
Monoclinic [010]2
Orthorhombic [001]2 [100]2
Tetragonal [001]4 [100]2
Trigonal [001]3 ��110�2 or [110]2
Hexagonal [001]6 ��110�2
Cubic [001]2 or [001]4 [111]3
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form for a given matrix is unique, the theoretical back-
ground leading to the algorithm and the proof that the
algorithm always terminates are quite sophisticated, but
the recipe for the algorithm is very simple and shown
below for the sake of completeness:
M is the (m � n) matrix to be converted to the Smith

normal form.
(a) Initialize: P := (m � m) identity matrix, Q :=

(n � n) identity matrix.
(b) M := row echelon form of M, apply row operations

also to P.
(c) If M is a diagonal matrix: End.
(d) M := MT.
(b) M := row echelon form of M, apply row operations

also to Q.
(c) If M is a diagonal matrix: End.
(d) M := MT, go to step (b).
The system Dx = Pb = v, v = [v1, . . . ,vn] has solutions

(mod Z) if and only if vi = 0 whenever di = 0. If this
condition is true, the solutions for Dx = Pb are described
by

xi 2 0;
1

di

; . . . ;
di ÿ 1

di

� �
� vi

di

if di 6� 0 �14�

and xi 2 Q otherwise.
For the purpose of computing cp, if solutions exist, the

components of x are set to xi � vi=di if di 6� 0, and xi � 0
otherwise. The other solutions from the set are not
needed. Finally, cp is obtained via cp = x � Q, and the
origin shift (I, c) is obtained as c = Pÿ1

g � cp. This
completes the construction of the change-of-basis matrix
(C, c).

Remark. The transformation matrices (C, c) produced
in this way are not, in general, unique. For example, any
combination of (C, c) and an operation of the Euclidean
normalizer (Koch & Fischer, 1983) of the given space-
group representation is again a valid transformation
matrix.

5.6. Example of space-group type determination

This example is based on a posting by Lutz (1997) to
the sci.techniques.xtallography newsgroup. Lutz solved
and re®ned a crystal structure in the noncentrosym-
metric space group P42bc (No. 106). The `calc MISSYM'
routine (Le Page, 1987) of the PLATON program
package (Spek, 1990) found approximate centres of
inversion at the following positions:

�1� 0:000 0:250 0:000

�2� 0:250 0:000 0:250

�3� 0:250 0:000 0:000

�4� 0:000 0:250 0:250:

To determine the new space-group type, the symmetry
operations corresponding to this list are added to the

operations of space group P42bc. The additional
symmetry operations in Jones Faithful notation are

�1� ÿ x;ÿy � 1=2;ÿz

�2� ÿ x � 1=2;ÿy;ÿz � 1=2

�3� ÿ x � 1=2;ÿy;ÿz

�4� ÿ x;ÿy � 1=2;ÿz � 1=2:

The expanded space group is, of course, centro-
symmetric, has four centring vectors and eight entries in
the list of representative symmetry matrices in the
space-group structure. Hence the order of this space-
group representation is 32. The centring vectors are

�1� �0; 0; 0�
�2� �1=2; 1=2; 0�
�3� �1=2; 1=2; 1=2�
�4� �0; 0; 1=2�:

Note that this is not one of the commonly used centring
types (A, B, C, I, R, F).

The matrix (P, 0) obtained with step (a) is 2z, xÿ y, x +
y. The point-group type determined with step (b) is
4/mmm. The matrix (M0, 0) obtained with step (c) is
1/2y + 1/2z, ÿ1/2y + 1/2z, x. Application of the trans-
formation (M0, 0)(P, 0) results in a C-centred setting.
Therefore step (d) is needed to construct the adjusted
matrix (M, 0) = z, y, ÿx. Application of

�C; 0� � �M; 0��P; 0� � x � y; x ÿ y � 1=2;ÿ2z

now produces a primitive setting. Finally, the determi-
nation of the origin shift (I, c) in step (e) succeeds for
space group P4/nmm (No. 129), and the resulting
change-of-basis matrix is

�C; c� � x � y; x ÿ y � 1=2;ÿ2z:

This matrix can immediately be used to transform the
atomic coordinates of the re®ned structure.

6. Generation of structure seminvariant vectors and
moduli

Structure seminvariant (s.s.) vectors and moduli are a
description of permissible or allowed origin shifts. A
detailed treatment was published, for example, by
Giacovazzo (1993). If the origin of the basis for a given
space-group representation is shifted by an allowed
origin shift sk , the symmetry environment of the old and
the new origin is identical. Allowed origin shift sk can be
obtained as solutions of the system (Wj ÿ I) � sk =
0 (mod Z) for all Wj simultaneously, where j runs over
all symmetry operations of a primitive setting of the
space group under consideration. sk can be divided into
two groups: continuous and discrete allowed origin shifts.
For example, in space group P2 (No. 3), the origin can be
shifted arbitrarily parallel to the twofold axis without
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changing its symmetry environment. This corresponds to
a continuous allowed origin shift. In the same space
group, the origin can also be shifted by [1=2; 0; 0]T,
[0; 1=2; 0]T and all linear combinations of these vectors.
These are the discrete allowed origin shifts. Other trivial
discrete allowed origin shifts correspond to the centring
vectors, if present, and the unit translations or their
multiples.

Allowed origin shifts can be conveniently represented
by a set of s.s. vectors and moduli. The mathematical
connection between the allowed shifts and the s.s.
vectors and moduli is explained in detail by Giacovazzo
(1993). The resulting recipe is very simple. A s.s. vector
representing continuous shifts is identical to the shift
vector, and the modulus is 0. In the case of space group
P2 for example, the continuous shifts along the twofold
axis are represented by the vector v1 = [0, 1, 0]T and the
modulus m1 = 0. The discrete shift [1=2, 0, 0]T is repre-
sented by v2 = [1, 0, 0]T and m2 = 2. Similarly, the shift
[0, 0, 1=2]T is represented by v3 = [0, 0, 1]T and m3 = 2.
This means that in order to obtain an integer vector the
discrete shift vector is multiplied by the least common
multiple of the denominators of its components, and the
least common multiple becomes the modulus.

The number of non-redundant s.s. vectors and moduli
can range from 0 (for example, space group Im3Åm) to 3
(for example, space group P2). In general there are
several choices for the non-redundant set. In the case of
space group P2, for example, v3 could be replaced by
[1, 0, 1]T with modulus 2, corresponding to the vector
[1=2, 0, 1=2], which is a linear combination of [1=2, 0, 0]T

and [0, 0, 1=2]T. Much of the algorithm presented below
is concerned with ®nding a concise non-redundant set.

The main steps of the s.s. determination algorithm are
as follows:

(a) Determination of the point group.
(b) Point-group-speci®c selection of space-group

generators.
(c) Determination of the continous allowed origin

shifts (s.s. vectors vi with moduli mi = 0).
(d) Construction of the matrix (P, 0) which transforms

Go to Gp , where Go is the set of symmetry operations in
the original setting and Gp is the set of symmetry
operations in a primitive setting.

(e) Determination of the discrete allowed origin shifts
(s.s. vectors vi and moduli mi with mi 6� 0).

The algorithms used for steps (a) and (d) have already
been presented above. The other steps are explained in
detail below.

6.1. Step (b): point-group-speci®c selection of space-
group generators

This step is very similar to step (c) of the determi-
nation of the space-group type. However, the axis
directions of the generators do not, in general, coincide
with basis vectors or simple linear combinations of basis

vectors as before. Therefore the selection process has to
be slightly more general.

For point group 1, the only generator selected is the
identity matrix. For point group 1Å , the only generator
selected is the centre of symmetry. All other point
groups can be treated based on the crystal system.

In the monoclinic system, there are only nM = 2
matrices in the list of representative symmetry matrices,
namely the identity matrix and a matrix with rotation-
part type |N| = 2 (twofold axis or a mirror plane). The
latter is selected as the ®rst generator. For centrosym-
metric space groups, the centre of symmetry is selected
as the second generator.

The situation is still very simple in the orthorhombic
case. Of the nM = 4 entries in the list of representative
symmetry matrices, one is the identity matrix. Any two
of the other three matrices can be selected as generators.
If a centre of symmetry exists, it is selected as the third
generator.

The tetragonal, trigonal and hexagonal cases can be
treated in a uniform way. To ®nd the ®rst generator, the
rotation-part type N1 and axis direction e1 are deter-
mined for each entry in the list of representative
symmetry matrices until the principal axis (|N1| = 4, 3 or
6, respectively) is found. Next, the list of rotation parts is
scanned for a matrix with |N2| = 2 and e2 6� e1. If such a
matrix can be found (for example, for point groups 422,
3m etc.), it is used as the second generator. For centro-
symmetric space groups, the centre of symmetry is
selected as the second or third generator.

In the cubic case, nM is either 12 or 48. To ®nd the ®rst
generator, the list of rotation parts is scanned for a
matrix with |N1| = 3. The second generator is found by
scanning for a matrix with |N2| = nM=6. If a centre of
symmetry exists, it is selected as the third generator.

6.2. Step (c): determination of continuous allowed origin
shifts

Continuous allowed origin shifts can be represented
by some vector s which can be multiplied by any real
value, in particular also in®nitesimally small real values.
Inspection of the equation (Wj ÿ I) � sk = 0 (mod Z) then
shows that the left-hand side must be exactly equal to
zero for continuous shifts. Therefore the problem of
®nding the continuous shifts is equivalent to the deter-
mination of the ordinary nullspace (Strang, 1986) of all
Wj ÿ I simultaneously.

The same argument can be applied for centred space
groups, where the allowed origin shifts are determined
by the solutions of the system (Wj ÿ I) � sk = 0 + �Bv

(mod Z) (Giacovazzo, 1993). Bv are the nZ centric
vectors and � = 0, 1. As is shown below, the determi-
nation of the discrete permissible origin shifts involves
the transformation of the rotation parts to a primitive
setting. This is not necessary for the continuous shifts.
On the contrary, in order to obtain a concise set of s.s.
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vectors, it is best to work with the rotation parts of the
centred setting.

To solve the equation system (Wj ÿ I) � sk = 0 for all
Wj simultaneously, it is suf®cient to solve the smaller
system with the ng rotation parts of the generators
selected in step (b). Since the maximum number for ng is
3, the biggest system to solve is just a (9 � 3) matrix. For
example, for nG = 3, the design of the system is

MZ � vi �
�W1 ÿ I�
�W2 ÿ I�
�W3 ÿ I�

2
4

3
5 � vi �

0

0

0

2
4

3
5: �15�

Note that each 0 on the right-hand side represents a null
vector with three components.

To solve the system for vi, MZ is transformed to its
row echelon form U. For example, for space group Cm
(No. 8) with nG = 1, the matrix W1 is

W1 �
1 0 0

0 ÿ1 0

0 0 1

2
4

3
5: �16�

In this example, MZ and its reduced row echelon form U
are

MZ �
0 0 0

0 ÿ2 0

0 0 0

2
4

3
5! U �

0 2 0

0 0 0

0 0 0

2
4

3
5: �17�

Here the rank of U is 1 and therefore the nullspace of
MZ is a two-dimensional plane. In general, the dimen-
sionality dN of the nullspace of MZ is 3 minus the rank of
U and can range from 0 (for example, space group P1Å) to
3 (space group P1).

The dN vectors spanning the nullspace of MZ are now
determined as the solution of U � sk = 0. For dN = 3, the
three most concise solutions are simply [1, 0, 0]T,
[0, 1, 0]T and [0, 0, 1]T. For dN = 1, the algorithm for the
determination of axes' directions can be reused. For dN =
2, four solution vectors to the system U � sk = 0 are
obtained by assigning, in turn, the pairs of values [1, 0],
[0, 1], [1, 1] and [1, ÿ1] to the free components
[compare with the solution of S � x = 0 in step (c) of the
space-group type determination]. The third component
for each of the four solution vectors is computed by
backsubstitution in U. The four resulting vectors are
sorted based on the squared `length', and the two
shortest vectors are taken as the basis for the nullspace.

The word `length' was put in quotes because a length
is, in general, only de®ned for a given metric. However,
for the purpose of ®nding the s.s. vectors with modulus 0,
it would be very arti®cial and also unnecessary to
require the knowledge of a metric. In this case, it is
suf®cient to assume a Cartesian basis.

6.3. Step (e): determination of the s.s. vectors vi and
moduli mi with mi 6� 0

To ®nd the discrete allowed origin shifts, the system
(Wj ÿ I) � sk = 0 (mod Z) has to be solved for Wj in a
primitive setting of the space group. Therefore the
generators selected in step (b) are transformed with the
change-of-basis matrix determined in step (d). The
transformed WP

j are used in the same way as before in
step (b) to construct a system Mp � vi = 0 (mod Z). For
example, if ng = 3,

Mp � vi �
�WP

1 ÿ I�
�WP

2 ÿ I�
�WP

3 ÿ I�

2
4

3
5 � vi �

0

0

0

2
4

3
5�mod Z�: �18�

The solutions to this system are obtained by evaluating
the Smith normal form D = PMPQ as explained in
step (e) of the determination of the space-group type.
However, this time more than one solution is needed. To
obtain the group of all discrete allowed origin shifts
(mod Z), the di solutions of equation (14) are computed
for each di 6� 0. Each of the shift vectors sk = x � Q
obtained in this way is added to the group which is then
expanded by pairwise addition as explained in the ®rst
part of this paper. The maximum order of a group of
discrete allowed origin shifts is 8, corresponding to space
group P1Å .

The smallest number of shifts that generate the whole
group can be used to obtain a non-redundant set of s.s.
vectors and moduli representing the discrete shifts.
Because the maximum order of the group is just 8,
searching for this set can be performed with a straight-
forward trial-and-error algorithm. First, it is checked if
the group can be generated from just one vector. If not,
it is checked if the group can be generated with a pair of
vectors. If this is also not possible, three vectors that
generate the group are selected. Of course, this is always
possible. Finally, the group-generating set of discrete
shifts found in this way is transformed back to the
centred setting, if necessary.

At this point, the problem of ®nding a non-redundant
set of s.s. vectors and moduli is mathematically solved.
Simply taking together the continuous and discrete
shifts produces a solution. However, there are, in
general, several possibilities for selecting group-gener-
ating discrete shifts. Further choices arise for centred
space groups, where the centring vectors also belong to
the group of discrete allowed origin shifts. Selecting the
`most concise' solution requires some extra effort. The
selection algorithm used is not explained in detail,
because it is mainly a cosmetic measure. The main idea is
that all vectors in the group of discrete shifts are
transformed to the centred setting, where they are
combined with all centring vectors and continuous shifts.
The latter also applies to primitive space groups. For
each discrete shift in the primitive setting, the `best'
vector resulting from these combinations is selected,
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based on the `length' [as introduced before in step (c)]
and the least common multiple of the denominators of
the components (corresponding to the s.s. modulus).
Before the shifts in the primitive setting are searched for
a subset of generators as explained above, they are
sorted based on the `length' of the corresponding best
vector in the centred setting. This is performed because
the vectors in the centred setting will ®nally become
visible.

To give a simple example, with the measures just
described, the s.s. vector and modulus for the standard
setting of space group F222 is v1 = [1, 1, 1]T, m1 = 4.
Without the measures it is v1 = [1, 3, 3]T, m1 = 4. In
general, the extra effort spent is rewarded by s.s. vectors
and moduli which are equal to those tabulated by
Giacovazzo (1993), and also results in `sensible' choices
for alternative settings which are not tabulated.

7. Source code availability

The algorithms described in this paper were developed
using the SgInfo library of ANSI C procedures (Grosse-
Kunstleve, 1995a,b). At the point of writing, the new
version of the library is available as a developmental
alpha-release without documentation. In the future, the
full source code and documentation will be available on
the SgInfo World-Wide-Web server. The library is free
for non-commercial applications.
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